Ashwagandha
Overview
Ashwagandha is a small evergreen shrub. It grows in India, the Middle East, and parts of Africa. The root and berry are used to make medicine.
Ashwagandha is commonly used for stress. It is also used as an "adaptogen" for many other conditions, but there is no good scientific evidence to support these other uses.
Don't confuse ashwagandha with Physalis alkekengi. Both are known as winter cherry. Also, don't confuse ashwagandha with blue cohosh, canaigre, codonopsis, ginseng American, ginseng panax, or eleuthero.
Coronavirus disease 2019 (COVID-19): There is no good evidence to support using ashwagandha for COVID-19. Follow healthy lifestyle choices and proven prevention methods instead.
Classification
Is a Form of:
Shrub
Primary Functions:
Stress
Also Known As:
Ajagandha, Amangura, Amukkirag, Asan
How Does It Work?
Ashwagandha contains chemicals that might help calm the brain, reduce swelling (inflammation), lower blood pressure, and alter the immune system.
Uses
- Some research shows that taking a specific ashwagandha root extract (KSM66, Ixoreal Biomed) 300 mg twice daily after food or another specific extract (Shoden, Arjuna Natural Ltd.) 240 mg daily for 60 days appears to improve symptoms of stress.
Recommended Dosing
BY MOUTH:
- For stress: Ashwagandha root extract 300 mg twice daily after food (KSM66, Ixoreal Biomed) or 240 mg daily (Shoden, Arjuna Natural Ltd.) for 60 days.
Ashwagandha Supplements Frequently Asked Questions
What are the side effects of ashwagandha?
Possible ashwagandha side effects
- May increase thyroid function.
- Can decrease blood pressure levels.
- May irritate GI tract.
- Can induce early pregnancies or miscarriages.
- May decrease blood sugar.
- May increase immune activity.
Who should not take ashwagandha?
For most healthy people, ashwagandha is considered safe. However, women who are pregnant or breastfeeding should avoid it, in addition to people with hyperthyroidism. Furthermore, this herb may interact with sedatives, as well as medications for the following conditions: diabetes.
Does Ashwagandha really work?
Organic ashwagandha supplements support energy levels without stimulating your heart the way caffeine does. Ashwagandha also provides stress relief by supporting your adrenal glands to release normal levels of the stress hormone cortisol. Another showed that Ashwagandha may be effective in reducing stress and anxiety.
How much ashwagandha should I take?
Ashwagandha is a medicinal herb that may offer several health benefits, such as improved blood sugar, inflammation, mood, memory, stress and anxiety, as well as a boost in muscle strength and fertility. Dosages vary depending on your needs, but 250–500 mg per day for at least one month seem effective.
Can Ashwagandha cause hair loss?
It is also known as telogen effluvium, wherein the hair follicles are pushed into a resting period. This results in hair shedding. Hair loss also occurs when our body is subjected to inadequate sleep. Ashwagandha is a powerful and popular Ayurvedic adaptogen that helps relieves stress and increase sleep.
Why is ashwagandha bad for you?
Ashwagandha may lower blood sugar levels. If patients are taking a medication to lower blood glucose it could make their levels go dangerously low. And if their levels go too low and blood sugars bottom out, they can pass out. The consequences of low blood glucose can be just as dangerous as high blood sugar.
Is Ashwagandha bad for kidneys?
Its damage can be occurred due to prolonged use and higher doses of drugs, exposure to some chemicals, toxins, or infectious agents. Herbal plants as Ashwagandha (Withania somnifera) may have free radical scavenging activity thereby can be used for the prevention and treatment of kidney damage.
Can Ashwagandha cause weight gain?
A statistically significant reduction in body weight and body mass index were observed in patients treated with Ashwagandha root extract compared to placebo. However, further studies are required to bolster the potential of Ashwagandha to prevent weight gain caused by long-term chronic stress.
Should I take ashwagandha in the morning or night?
For a 30-day period, doses of an ashwagandha aqueous extract were increased in 10-day intervals, starting at 250 mg in the morning and 500 mg in the evening on days 1 to 10 (750 mg/day). From days 11 to 20, 500 mg was taken in the morning and 500 mg was taken in the evening (1,000 mg/day).
Does Ashwagandha really work for anxiety?
Ashwagandha is best known for its stress-lowering effects. Moreover, 500–600 mg of ashwagandha per day for 6–12 weeks may reduce anxiety and lower the likelihood of insomnia in people with stress and anxiety disorders. Summary Ashwagandha seems effective at lowering symptoms of stress and anxiety.
Is Ashwagandha safe for long term use?
Ashwagandha is a safe supplement for most people, although its long-term effects are unknown. However, certain individuals should not take it, including pregnant and breastfeeding women. People with autoimmune diseases should also avoid ashwagandha unless authorized by a healthcare provider.
How quickly does Ashwagandha work?
When used in conjunction with a healthy lifestyle, ashwagandha can begin to impact the body beneficially within two weeks. The quality of your ashwagandha supplement is what will make the biggest difference. A high-concentration, full-spectrum extract is required to make the biggest impact in your body.
Should you take ashwagandha everyday?
Ashwagandha is a medicinal herb that may offer several health benefits, such as improved blood sugar, inflammation, mood, memory, stress and anxiety, as well as a boost in muscle strength and fertility. Dosages vary depending on your needs, but 250–500 mg per day for at least one month seem effective.
Does Ashwagandha increase estrogen?
Although ashwagandha was associated with increases in DHEA-S and testosterone, no statistically significant effects on morning salivary cortisol levels (a nonsignificant 7.8% lower level compared to placebo) or estradiol concentrations (a nonsignificant 11.6% lower level compared to placebo) were identified.
Does Ashwagandha reverse GREY hair?
CommentsHealthy Hair: Used in shampoos, Ashwagandha is believed to help improve scalp circulation and strengthen the hair, as well as help get rid of dandruff. It also appears to stimulate production of melanin, the pigment responsible for the colour of your hair. So, it may actually reverse greying of hair.
Can Ashwagandha be harmful?
Ashwagandha may lower blood sugar levels. If patients are taking a medication to lower blood glucose it could make their levels go dangerously low. And if their levels go too low and blood sugars bottom out, they can pass out. The consequences of low blood glucose can be just as dangerous as high blood sugar.
Does Ashwagandha stop hair loss?
Temporary hair loss occurs when our body is stressed out. This results in hair shedding. Hair loss also occurs when our body is subjected to inadequate sleep. Ashwagandha is a powerful and popular Ayurvedic adaptogen that helps relieves stress and increase sleep.
Is Ashwagandha hard on the liver?
Hepatotoxicity. Despite widescale use, ashwagandha is considered generally safe and without major adverse effects. Recently, however, several cases of clinically apparent liver injury have been reported in patients taking commercial herbal products that are labelled as containing ashwagandha.
Does Ashwagandha interact with anything?
Taking ashwagandha along with medications that decrease the immune system might decrease the effectiveness of these medications. Some of these sedative medications include clonazepam (Klonopin), diazepam (Valium), lorazepam (Ativan), alprazolam (Xanax), flurazepam (Dalmane), midazolam (Versed), and others.
Clinical Studies
- ^ Modi MB, Donga SB, Dei L. Clinical evaluation of Ashokarishta, Ashwagandha Churna and Praval Pishti in the management of menopausal syndrome. Ayu. (2012)
- ^ Mahanta V, Dudhamal TS, Gupta SK. Management of tennis elbow by Agnikarma. J Ayurveda Integr Med. (2013)
- ^ a b Vyas P, et al. Clinical evaluation of Rasayana compound as an adjuvant in the management of tuberculosis with anti-Koch's treatment. Ayu. (2012)
- ^ a b Chopra A, et al. A 32-week randomized, placebo-controlled clinical evaluation of RA-11, an Ayurvedic drug, on osteoarthritis of the knees. J Clin Rheumatol. (2004)
- ^ a b c d e f Widodo N, et al. Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling. PLoS One. (2010)
- ^ Widodo N, et al. Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses. Cancer Lett. (2008)
- ^ Dhuley JN. Adaptogenic and cardioprotective action of ashwagandha in rats and frogs. J Ethnopharmacol. (2000)
- ^ Kulkarni SK, Dhir A. Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry. (2008)
- ^ Baliga MS, et al. Rasayana Drugs From the Ayurvedic System of Medicine as Possible Radioprotective Agents in Cancer Treatment. Integr Cancer Ther. (2013)
- ^ a b c d e Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med. (2012)
- ^ Deocaris CC, et al. Merger of ayurveda and tissue culture-based functional genomics: inspirations from systems biology. J Transl Med. (2008)
- ^ Modak M, et al. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. (2007)
- ^ a b [No authors listed. Monograph. Withania somnifera. Altern Med Rev. (2004)
- ^ a b c d e f g h i j k l m n o p q r s t u Chatterjee S, et al. Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry. (2010)
- ^ a b Namdeo AG, et al. Metabolic characterization of Withania somnifera from different regions of India using NMR spectroscopy. Planta Med. (2011)
- ^ a b c Zhao J, et al. Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull (Tokyo). (2002)
- ^ a b c d Choudhary MI, et al. Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry. (2010)
- ^ Tong X, Zhang H, Timmermann BN. Chlorinated Withanolides from Withania somnifera. Phytochem Lett. (2011)
- ^ Pramanick S, et al. Withanolide Z, a new chlorinated withanolide from Withania somnifera. Planta Med. (2008)
- ^ a b Bhattacharya SK, Satyan KS, Ghosal S. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol. (1997)
- ^ a b c Mishra LC, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev. (2000)
- ^ a b Ganzera M, Choudhary MI, Khan IA. Quantitative HPLC analysis of withanolides in Withania somnifera. Fitoterapia. (2003)
- ^ a b c d e f Subbaraju GV, et al. Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod. (2006)
- ^ a b c d e f Mulabagal V, et al. Withanolide sulfoxide from Aswagandha roots inhibits nuclear transcription factor-kappa-B, cyclooxygenase and tumor cell proliferation. Phytother Res. (2009)
- ^ Misra L, et al. Unusually sulfated and oxygenated steroids from Withania somnifera. Phytochemistry. (2005)
- ^ a b c d e f g Alam N, et al. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complement Altern Med. (2011)
- ^ Misra L, et al. 1,4-Dioxane and ergosterol derivatives from Withania somnifera roots. J Asian Nat Prod Res. (2012)
- ^Â Withanolides from Withania somnifera roots.
- ^ a b Nosalova G, et al. Herbal polysaccharides and cough reflex. Respir Physiol Neurobiol. (2013)
- ^ a b Sinha S, et al. In vivo anti-tussive activity and structural features of a polysaccharide fraction from water extracted Withania somnifera. J Ethnopharmacol. (2011)
- ^ Girish KS, et al. Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J Basic Microbiol. (2006)
- ^ Machiah DK, Girish KS, Gowda TV. A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol C Toxicol Pharmacol. (2006)
- ^ Chen LX, He H, Qiu F. Natural withanolides: an overview. Nat Prod Rep. (2011)
- ^ a b c d e f Udayakumar R, et al. Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci. (2009)
- ^Â Phytochemical variability in commercial herbal products and preparations of Withania somnifera (Ashwagandha).
- ^ Srivastava P, et al. Simultaneous quantification of withanolides in Withania somnifera by a validated high-performance thin-layer chromatographic method. J AOAC Int. (2008)
- ^ a b c d e f g h Malik F, et al. A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci. (2007)
- ^ a b c d e f g h i Yang Z, et al. Withania somnifera Root Extract Inhibits Mammary Cancer Metastasis and Epithelial to Mesenchymal Transition. PLoS One. (2013)
- ^ Shreevathsa M, Ravishankar B, Dwivedi R. Anti depressant activity of Mamsyadi Kwatha: An Ayurvedic compound formulation. Ayu. (2013)
- ^ a b Yokota Y, et al. Development of withaferin A analogs as probes of angiogenesis. Bioorg Med Chem Lett. (2006)
- ^ a b c d e f Bargagna-Mohan P, et al. The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol. (2007)
- ^ van Beijnum JR, et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood. (2006)
- ^ Eckes B, et al. Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci. (2000)
- ^ a b c d e f Grin B, et al. Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One. (2012)
- ^ Rogers KR, Herrmann H, Franke WW. Characterization of disulfide crosslink formation of human vimentin at the dimer, tetramer, and intermediate filament levels. J Struct Biol. (1996)
- ^ a b c d e Thaiparambil JT, et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer. (2011)
- ^ Li QF, et al. Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling. J Biol Chem. (2006)
- ^ a b c Lahat G, et al. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One. (2010)
- ^ Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. (2000)
- ^ Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. (2002)
- ^ a b c Grover A, et al. Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera's key metabolite withaferin A. BMC Genomics. (2010)
- ^ a b Rushe M, et al. Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure. (2008)
- ^ a b Kaileh M, et al. Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem. (2007)
- ^ Na HK, Surh YJ. Transcriptional regulation via cysteine thiol modification: a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog. (2006)
- ^ a b c d e Yang H, Shi G, Dou QP. The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from "Indian winter cherry". Mol Pharmacol. (2007)
- ^ Yang H, et al. Celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. (2006)
- ^ Grover A, et al. Probing the anticancer mechanism of prospective herbal drug Withaferin A on mammals: a case study on human and bovine proteasomes. BMC Genomics. (2010)
- ^ a b c d e f g h i j k Khedgikar V, et al. Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis. (2013)
- ^ Liu J, et al. Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts. FASEB J. (2006)
- ^ a b Yang H, et al. Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo. PLoS One. (2012)
- ^ Rishi AK, et al. Cell cycle- and apoptosis-regulatory protein-1 is involved in apoptosis signaling by epidermal growth factor receptor. J Biol Chem. (2006)
- ^ Wadegaonkar VP, Wadegaonkar PA. Withanone as an inhibitor of survivin: A potential drug candidate for cancer therapy. J Biotechnol. (2013)
- ^ Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol. (2007)
- ^ Dundas SR, et al. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol. (2005)
- ^ a b Wadhwa R, et al. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer. (2006)
- ^ Wadhwa R, et al. Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res. (2002)
- ^ Kaula SC, et al. Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Lett. (2000)
- ^ a b Grover A, et al. Withanone binds to mortalin and abrogates mortalin-p53 complex: computational and experimental evidence. Int J Biochem Cell Biol. (2012)
- ^ Wadhwa R, et al. Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res. (2000)
- ^ Eyers PA, et al. A novel mechanism for activation of the protein kinase Aurora A. Curr Biol. (2003)
- ^ Tsai MY, et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol. (2003)
- ^ Bischoff JR, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. (1998)
- ^ Bar-Shira A, et al. Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res. (2002)
- ^ Li D, et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res. (2003)
- ^ Tanaka T, et al. Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res. (1999)
- ^ Agnese V, et al. The role of Aurora-A inhibitors in cancer therapy. Ann Oncol. (2007)
- ^ Warner SL, et al. Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin Cancer Res. (2009)
- ^ a b c Grover A, et al. Ashwagandha derived withanone targets TPX2-Aurora A complex: computational and experimental evidence to its anticancer activity. PLoS One. (2012)
- ^ Zhao B, et al. Modulation of kinase-inhibitor interactions by auxiliary protein binding: crystallography studies on Aurora A interactions with VX-680 and with TPX2. Protein Sci. (2008)
- ^ a b Grover A, et al. Blocking protein kinase C signaling pathway: mechanistic insights into the anti-leishmanial activity of prospective herbal drugs from Withania somnifera. BMC Genomics. (2012)
- ^ a b c Nakajima H, et al. An Extract of Withania somnifera Attenuates Endothelin-1-stimulated Pigmentation in Human Epidermal Equivalents through the Interruption of PKC Activity Within Melanocytes. Phytother Res. (2012)
- ^ Hartl FU. Molecular chaperones in cellular protein folding. Nature. (1996)
- ^ Young JC, et al. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. (2004)
- ^ Welch WJ. Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos Trans R Soc Lond B Biol Sci. (1993)
- ^ Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med. (2004)
- ^ Pearl LH, Prodromou C, Workman P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J. (2008)
- ^ Solit DB, Chiosis G. Development and application of Hsp90 inhibitors. Drug Discov Today. (2008)
- ^ Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett. (2007)
- ^ Neckers L. Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem. (2003)
- ^ Gray PJ Jr, et al. Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer. (2008)
- ^ a b c Yu Y, et al. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol. (2010)
- ^ a b c Grover A, et al. Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. BMC Bioinformatics. (2011)
- ^ a b Patil D, et al. Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J Pharm Biomed Anal. (2013)
- ^ a b Bharavi K, et al. Prevention of cadmium bioaccumulation by herbal adaptogens. Indian J Pharmacol. (2011)
- ^ Bharavi K, et al. Reversal of Cadmium-induced Oxidative Stress in Chicken by Herbal Adaptogens Withania Somnifera and Ocimum Sanctum. Toxicol Int. (2010)
- ^ Sharma V, Sharma S, Pracheta. Protective effect of Withania somnifera roots extract on hematoserological profiles against lead nitrate-induced toxicity in mice. Indian J Biochem Biophys. (2012)
- ^ Otterbein LE, et al. Heme oxygenase-1 and carbon monoxide modulate DNA repair through ataxia-telangiectasia mutated (ATM) protein. Proc Natl Acad Sci U S A. (2011)
- ^ Motterlini R, et al. Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem. (2000)
- ^ a b c d e Hosny Mansour H, Farouk Hafez H. Protective effect of Withania somnifera against radiation-induced hepatotoxicity in rats. Ecotoxicol Environ Saf. (2012)
- ^ a b Velmurugan K, et al. Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim. Free Radic Biol Med. (2009)
- ^ a b c d e f g Widodo N, et al. Deceleration of senescence in normal human fibroblasts by withanone extracted from ashwagandha leaves. J Gerontol A Biol Sci Med Sci. (2009)
- ^ Widodo N, et al. Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res. (2007)
- ^Â p21Waf1/Cip1 Plays a Critical Role in Modulating Senescence Through Changes of DNA Methylation.
- ^ a b c d e Bhattacharya SK, et al. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine. (2000)
- ^ Grover A, et al. Computational evidence to inhibition of human acetyl cholinesterase by withanolide a for Alzheimer treatment. J Biomol Struct Dyn. (2012)
- ^ Choudhary MI, et al. Cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull (Tokyo). (2004)
- ^ a b c Schliebs R, et al. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int. (1997)
- ^ a b Seth V, et al. Lipid peroxidation, antioxidant enzymes, and glutathione redox system in blood of human poisoning with propoxur. Clin Biochem. (2000)
- ^ a b Yadav CS, et al. Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: attenuation by Withania somnifera. Indian J Biochem Biophys. (2010)
- ^ Bhattarai JP, Park SJ, Han SK. Potentiation of NMDA Receptors by Withania somnifera on Hippocampal CA1 Pyramidal Neurons. Am J Chin Med. (2013)
- ^ Soman S, et al. Impaired motor learning attributed to altered AMPA receptor function in the cerebellum of rats with temporal lobe epilepsy: Ameliorating effects of Withania somnifera and withanolide A. Epilepsy Behav. (2013)
- ^ a b Soman S, et al. Oxidative stress induced NMDA receptor alteration leads to spatial memory deficits in temporal lobe epilepsy: ameliorative effects of Withania somnifera and Withanolide A. Neurochem Res. (2012)
- ^ Singh J, Kaur G. Transcriptional regulation of PSA-NCAM expression by NMDA receptor activation in RA-differentiated C6 glioma cultures. Brain Res Bull. (2009)
- ^ Rabinovsky ED, Le WD, McManaman JL. Differential effects of neurotrophic factors on neurotransmitter development in the IMR-32 human neuroblastoma cell line. J Neurosci. (1992)
- ^ a b Kataria H, et al. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One. (2012)
- ^ Parihar MS, Hemnani T. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci. (2003)
- ^ Han SK, Abraham IM, Herbison AE. Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology. (2002)
- ^ DeFazio RA, et al. Activation of A-type gamma-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol. (2002)
- ^ a b c Kumar A, Kalonia H. Effect of Withania somnifera on Sleep-Wake Cycle in Sleep-Disturbed Rats: Possible GABAergic Mechanism. Indian J Pharm Sci. (2008)
- ^ a b Mehta AK, et al. Pharmacological effects of Withania somnifera root extract on GABAA receptor complex. Indian J Med Res. (1991)
- ^ Kulkarni SK, Akula KK, Dhir A. Effect of Withania somnifera Dunal root extract against pentylenetetrazol seizure threshold in mice: possible involvement of GABAergic system. Indian J Exp Biol. (2008)
- ^ Bhattarai JP, Ah Park S, Han SK. The methanolic extract of Withania somnifera ACTS on GABAA receptors in gonadotropin releasing hormone (GnRH) neurons in mice. Phytother Res. (2010)
- ^ a b c Ahmad M, et al. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol. (2005)
- ^ a b c d e Shah PC, et al. Effect of Withania somnifera on forced swimming test induced immobility in mice and its interaction with various drugs. Indian J Physiol Pharmacol. (2006)
- ^ Dhir A, Kulkarni SK. Effect of addition of yohimbine (alpha-2-receptor antagonist) to the antidepressant activity of fluoxetine or venlafaxine in the mouse forced swim test. Pharmacology. (2007)
- ^ a b c Tripathi AK, et al. Alterations in the sensitivity of 5(th) receptor subtypes following chronic asvagandha treatment in rats. Anc Sci Life. (1998)
- ^ a b c Ramanathan M, Balaji B, Justin A. Behavioural and neurochemical evaluation of Perment an herbal formulation in chronic unpredictable mild stress induced depressive model. Indian J Exp Biol. (2011)
- ^ a b c d e Bhatnagar M, Sharma D, Salvi M. Neuroprotective effects of Withania somnifera dunal.: A possible mechanism. Neurochem Res. (2009)
- ^ Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. (1988)
- ^ Dawson VL, et al. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. (1991)
- ^ Harvey BH, et al. Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT 2A/C-receptors. Metab Brain Dis. (2006)
- ^ Bhattacharya A, Ghosal S, Bhattacharya SK. Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol. (2001)
- ^ Chaurasia SS, Panda S, Kar A. Withania somnifera root extract in the regulation of lead-induced oxidative damage in male mouse. Pharmacol Res. (2000)
- ^ a b Baitharu I, et al. Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol. (2013)
- ^ a b Naidu PS, Singh A, Kulkarni SK. Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother Res. (2006)
- ^ a b Naidu PS, Singh A, Kulkarni SK. Effect of Withania somnifera root extract on haloperidol-induced orofacial dyskinesia: possible mechanisms of action. J Med Food. (2003)
- ^ a b Kasture S, et al. Withania somnifera prevents morphine withdrawal-induced decrease in spine density in nucleus accumbens shell of rats: a confocal laser scanning microscopy study. Neurotox Res. (2009)
- ^ Spiga S, et al. Morphine withdrawal-induced morphological changes in the nucleus accumbens. Eur J Neurosci. (2005)
- ^ a b Priyandoko D, et al. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite. PLoS One. (2011)
- ^ Tohda C, Kuboyama T, Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosignals. (2005)
- ^ Kuboyama T, et al. Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport. (2002)
- ^ a b Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol. (2005)
- ^ Jana CK, et al. Synthesis of withanolide A, biological evaluation of its neuritogenic properties, and studies on secretase inhibition. Angew Chem Int Ed Engl. (2011)
- ^ Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport. (2000)
- ^ a b c d e f Tohda C, Joyashiki E. Sominone enhances neurite outgrowth and spatial memory mediated by the neurotrophic factor receptor, RET. Br J Pharmacol. (2009)
- ^ a b c Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Abeta(25-35)-induced neurodegeneration. Eur J Neurosci. (2006)
- ^ a b Withanoside IV and its active metabolite, sominone, attenuate Aβ(25–35)-induced neurodegeneration.
- ^ a b c d Konar A, et al. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One. (2011)
- ^ Durbec P, et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature. (1996)
- ^ Trupp M, et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature. (1996)
- ^ a b Chaudhary G, et al. Evaluation of Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. Clin Exp Pharmacol Physiol. (2003)
- ^ a b c Singh B, et al. Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots of Withania somnifera Dun. Phytother Res. (2001)
- ^ a b Singh B, Chandan BK, Gupta DK. Adaptogenic activity of a novel withanolide-free aqueous fraction from the roots of Withania somnifera Dun. (Part II). Phytother Res. (2003)
- ^ a b Kaur P, et al. A biologically active constituent of withania somnifera (ashwagandha) with antistress activity. Indian J Clin Biochem. (2001)
- ^ Bredt DS, et al. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron. (1991)
- ^Â Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues.
- ^ a b c d Bhattacharya SK, Muruganandam AV. Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav. (2003)
- ^ a b c d Gupta GL, Rana AC. Protective effect of Withania somnifera dunal root extract against protracted social isolation induced behavior in rats. Indian J Physiol Pharmacol. (2007)
- ^ Goldberg DP, Hillier VF. A scaled version of the General Health Questionnaire. Psychol Med. (1979)
- ^ a b c Biswal BM, et al. Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integr Cancer Ther. (2013)
- ^ Gupta GL, Rana AC. Effect of Withania somnifera Dunal in ethanol-induced anxiolysis and withdrawal anxiety in rats. Indian J Exp Biol. (2008)
- ^ a b A standardized Withania somnifera extract significantly reduces stress-related parameters in chronically stressed humans: a double-blind, randomized, placebo-controlled study.
- ^ Cooley K, et al. Naturopathic care for anxiety: a randomized controlled trial ISRCTN78958974. PLoS One. (2009)
- ^ Andrade C, et al. A double-blind, placebo-controlled evaluation of the anxiolytic efficacy ff an ethanolic extract of withania somnifera. Indian J Psychiatry. (2000)
- ^ a b Maity T, et al. A study on evalution of antidepressant effect of imipramine adjunct with Aswagandha and Bramhi. Nepal Med Coll J. (2011)
- ^ Gautam A, Wadhwa R, Thakur MK. Involvement of hippocampal Arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiol Learn Mem. (2013)
- ^ Ahmed ME, et al. Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma. (2013)
- ^ Plaschke K, et al. Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis. (2010)
- ^ Jain S, et al. Neuroprotective effects of Withania somnifera Dunn. in hippocampal sub-regions of female albino rat. Phytother Res. (2001)
- ^ a b Kumar A, Kalonia H. Protective effect of Withania somnifera Dunal on the behavioral and biochemical alterations in sleep-disturbed mice (Grid over water suspended method). Indian J Exp Biol. (2007)
- ^ a b Ilayperuma I, Ratnasooriya WD, Weerasooriya TR. Effect of Withania somnifera root extract on the sexual behaviour of male rats. Asian J Androl. (2002)
- ^ a b c d Kaurav BP, et al. Influence of Withania somnifera on obsessive compulsive disorder in mice. Asian Pac J Trop Med. (2012)
- ^ Krishnamurthy MN, Telles S. Assessing depression following two ancient Indian interventions: effects of yoga and ayurveda on older adults in a residential home. J Gerontol Nurs. (2007)
- ^ Manjunath NK, Telles S. Influence of Yoga and Ayurveda on self-rated sleep in a geriatric population. Indian J Med Res. (2005)
- ^ a b c d e f g Raut AA, et al. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J Ayurveda Integr Med. (2012)
- ^ Joel D. Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry. (2006)
- ^Â Evaluation of Ashwagandha in alcohol withdrawal syndrome.
- ^ Visavadiya NP, Narasimhacharya AV. Ameliorative effects of herbal combinations in hyperlipidemia. Oxid Med Cell Longev. (2011)
- ^ a b c d e f g h i Visavadiya NP, Narasimhacharya AV. Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesteremic rats. Phytomedicine. (2007)
- ^ a b Gupta SK, et al. Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol Cell Biochem. (2004)
- ^ Mohanty IR, Arya DS, Gupta SK. Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion induced apoptosis. Clin Nutr. (2008)
- ^ Hamza A, Amin A, Daoud S. The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol. (2008)
- ^ a b c Sandhu JS, et al. Effects of Withania somnifera (Ashwagandha) and Terminalia arjuna (Arjuna) on physical performance and cardiorespiratory endurance in healthy young adults. Int J Ayurveda Res. (2010)
- ^ a b Jilani K, et al. Withaferin A-stimulated Ca2+ entry, ceramide formation and suicidal death of erythrocytes. Toxicol In Vitro. (2013)
- ^ a b c Datta A, et al. Antidiabetic and antihyperlipidemic activity of hydroalcoholic extract of Withania coagulans Dunal dried fruit in experimental rat models. J Ayurveda Integr Med. (2013)
- ^ a b c d Agnihotri AP, et al. Effects of Withania somnifera in patients of schizophrenia: A randomized, double blind, placebo controlled pilot trial study. Indian J Pharmacol. (2013)
- ^Â Effect of withania somnifera on levels of sex hormones in the diabetic male rats.
- ^ a b Anwer T, et al. Protective effect of Withania somnifera against oxidative stress and pancreatic beta-cell damage in type 2 diabetic rats. Acta Pol Pharm. (2012)
- ^ a b c d e Effect of withania somnifera on levels of sex hormones in the diabetic male rats.
- ^ Park HJ, et al. Withaferin A induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Biofactors. (2008)
- ^ a b c Wankhede S, et al. Examining the effect of Withania somnifera supplementation on muscle strength and recovery: a randomized controlled trial. J Int Soc Sports Nutr. (2015)
- ^ Shenoy S, et al. Effects of eight-week supplementation of Ashwagandha on cardiorespiratory endurance in elite Indian cyclists. J Ayurveda Integr Med. (2012)
- ^ Giuliani N, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood. (2007)
- ^ Ito Y, et al. Lactacystin, a proteasome inhibitor, enhances BMP-induced osteoblastic differentiation by increasing active Smads. Biochem Biophys Res Commun. (2011)
- ^ Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. (2003)
- ^ Margalit A, et al. Altered arachidonic acid metabolism in urate crystal induced inflammation. Inflammation. (1997)
- ^ Rasool M, Varalakshmi P. Suppressive effect of Withania somnifera root powder on experimental gouty arthritis: An in vivo and in vitro study. Chem Biol Interact. (2006)
- ^ Sumantran VN, et al. The relationship between chondroprotective and antiinflammatory effects of Withania somnifera root and glucosamine sulphate on human osteoarthritic cartilage in vitro. Phytother Res. (2008)
- ^ Sumantran VN, et al. Chondroprotective potential of root extracts of Withania somnifera in osteoarthritis. J Biosci. (2007)
- ^ Khanna D, et al. Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol. (2007)
- ^ a b Nagareddy PR, Lakshmana M. Withania somnifera improves bone calcification in calcium-deficient ovariectomized rats. J Pharm Pharmacol. (2006)
- ^ a b Davis L, Kuttan G. Effect of Withania somnifera on cell mediated immune responses in mice. J Exp Clin Cancer Res. (2002)
- ^ a b c d Kour K, et al. Restoration of stress-induced altered T cell function and corresponding cytokines patterns by Withanolide A. Int Immunopharmacol. (2009)
- ^Â Effect of Withania somnifera on Lysosomal Acid Hydrolases in Adjuvant-induced Arthritis in Rats.
- ^ Rasool M, Varalakshmi P. Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascul Pharmacol. (2006)
- ^ a b c Khan B, et al. Augmentation and proliferation of T lymphocytes and Th-1 cytokines by Withania somnifera in stressed mice. Int Immunopharmacol. (2006)
- ^ a b c d Sinha P, Ostrand-Rosenberg S. Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunol Immunother. (2013)
- ^ a b Nagalakshmi ML, et al. Interleukin-22 activates STAT3 and induces IL-10 by colon epithelial cells. Int Immunopharmacol. (2004)
- ^ a b c d e f g h i j Malik F, et al. Immune modulation and apoptosis induction: Two sides of antitumoural activity of a standardised herbal formulation of Withania somnifera. Eur J Cancer. (2009)
- ^ a b c d e f Bani S, et al. Selective Th1 up-regulating activity of Withania somnifera aqueous extract in an experimental system using flow cytometry. J Ethnopharmacol. (2006)
- ^ a b c Gupta YK, et al. Reversal of paclitaxel induced neutropenia by Withania somnifera in mice. Indian J Physiol Pharmacol. (2001)
- ^ Vetvicka V, Vetvickova J. Immune enhancing effects of WB365, a novel combination of Ashwagandha (Withania somnifera) and Maitake (Grifola frondosa) extracts. N Am J Med Sci. (2011)
- ^ a b Davis L, Kuttan G. Immunomodulatory activity of Withania somnifera. J Ethnopharmacol. (2000)
- ^ Nemmani KV, et al. Cell proliferation and natural killer cell activity by polyherbal formulation, Immu-21 in mice. Indian J Exp Biol. (2002)
- ^ a b Bhat J, et al. In vivo enhancement of natural killer cell activity through tea fortified with Ayurvedic herbs. Phytother Res. (2010)
- ^ Mikolai J, et al. In vivo effects of Ashwagandha (Withania somnifera) extract on the activation of lymphocytes. J Altern Complement Med. (2009)
- ^ a b c Mwitari PG, et al. Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus. PLoS One. (2013)
- ^ Debnath PK, et al. Adjunct therapy of Ayurvedic medicine with anti tubercular drugs on the therapeutic management of pulmonary tuberculosis. J Ayurveda Integr Med. (2012)
- ^ a b c d e f Ahmad MK, et al. Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fertil Steril. (2010)
- ^ a b c d e f Mahdi AA, et al. Withania somnifera Improves Semen Quality in Stress-Related Male Fertility. Evid Based Complement Alternat Med. (2009)
- ^ a b Hahm ER, et al. Withaferin a suppresses estrogen receptor-α expression in human breast cancer cells. Mol Carcinog. (2011)
- ^ a b c d Panda S, Kar A. Withania somnifera and Bauhinia purpurea in the regulation of circulating thyroid hormone concentrations in female mice. J Ethnopharmacol. (1999)
- ^ Panda S, Kar A. Changes in thyroid hormone concentrations after administration of ashwagandha root extract to adult male mice. J Pharm Pharmacol. (1998)
- ^ a b Combined Effects of Ashwagandha, Guggulu and Bauhinia Extracts in the Regulation of Thyroid Function and on Lipid Peroxidation in Mice.
- ^ Jatwa R, Kar A. Amelioration of metformin-induced hypothyroidism by Withania somnifera and Bauhinia purpurea extracts in Type 2 diabetic mice. Phytother Res. (2009)
- ^ van der Hooft CS, et al. Thyrotoxicosis following the use of ashwagandha. Ned Tijdschr Geneeskd. (2005)
- ^ Kalani A, Bahtiyar G, Sacerdote A. Ashwagandha root in the treatment of non-classical adrenal hyperplasia. BMJ Case Rep. (2012)
- ^ Yang ES, et al. Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol In Vitro. (2011)
- ^ a b c SoRelle JA, et al. Withaferin A inhibits pro-inflammatory cytokine-induced damage to islets in culture and following transplantation. Diabetologia. (2013)
- ^ Bhattacharya A, et al. Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicity in rats. Phytother Res. (2000)
- ^ Gagnon J, et al. Increased antigen responsiveness of naive CD8 T cells exposed to IL-7 and IL-21 is associated with decreased CD5 expression. Immunol Cell Biol. (2010)
- ^ Comber JD, Bamezai AK. In vitro derivation of interferon-γ producing, IL-4 and IL-7 responsive memory-like CD4(+) T cells. Vaccine. (2012)
- ^ a b Jeyanthi T, Subramanian P. Nephroprotective effect of Withania somnifera: a dose-dependent study. Ren Fail. (2009)
- ^ MartÃn-Herrera D, et al. Diuretic activity of Withania aristata: an endemic Canary Island species. J Ethnopharmacol. (2007)
- ^ a b Benjumea D, et al. Withanolides from Whitania aristata and their diuretic activity. J Ethnopharmacol. (2009)
- ^ a b Senthilnathan P, et al. Chemotherapeutic efficacy of paclitaxel in combination with Withania somnifera on benzo(a)pyrene-induced experimental lung cancer. Cancer Sci. (2006)
- ^ Senthilnathan P, et al. Stabilization of membrane bound enzyme profiles and lipid peroxidation by Withania somnifera along with paclitaxel on benzo(a)pyrene induced experimental lung cancer. Mol Cell Biochem. (2006)
- ^ Senthilnathan P, et al. Enhancement of antitumor effect of paclitaxel in combination with immunomodulatory Withania somnifera on benzo(a)pyrene induced experimental lung cancer. Chem Biol Interact. (2006)
- ^ Walczak H, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. (1999)
- ^ Srivastava RK. Intracellular mechanisms of TRAIL and its role in cancer therapy. Mol Cell Biol Res Commun. (2000)
- ^ Ichikawa H, et al. Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression. Mol Cancer Ther. (2006)
- ^ Kim S, et al. Sanguinarine-induced apoptosis: generation of ROS, down-regulation of Bcl-2, c-FLIP, and synergy with TRAIL. J Cell Biochem. (2008)
- ^ a b Lee TJ, et al. Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic Biol Med. (2009)
- ^ Jung EM, et al. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis. (2005)
- ^ Kim H, et al. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res. (2006)
- ^ Roué G, et al. Selective inhibition of IkappaB kinase sensitizes mantle cell lymphoma B cells to TRAIL by decreasing cellular FLIP level. J Immunol. (2007)
- ^ a b Mohan R, et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. (2004)
- ^ Lee DH, et al. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway. Oncol Rep. (2013)
- ^ Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. (2002)
- ^ Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. (2009)
- ^ a b Hahm ER, et al. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One. (2011)
- ^ Hahm ER, Singh SV. Autophagy fails to alter withaferin a-mediated lethality in human breast cancer cells. Curr Cancer Drug Targets. (2013)
- ^ Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. (2007)
- ^ Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene. (2000)
- ^ a b c d Lee J, Hahm ER, Singh SV. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis. (2010)
- ^ Heinrich PC, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. (1998)
- ^ a b c Stan SD, et al. Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res. (2008)
- ^ Dijkers PF, et al. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol. (2000)
- ^ Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. (2000)
- ^ Reedijk M, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. (2005)
- ^ Hu C, et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. (2006)
- ^ Koduru S, et al. Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther. (2010)
- ^ a b Lee J, Sehrawat A, Singh SV. Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat. (2012)
- ^ Hahm ER, Lee J, Singh SV. Role of mitogen-activated protein kinases and Mcl-1 in apoptosis induction by withaferin A in human breast cancer cells. Mol Carcinog. (2013)
- ^ Khazal KF, et al. Effect of an extract of Withania somnifera root on estrogen receptor-positive mammary carcinomas. Anticancer Res. (2013)
- ^ a b Yadav B, et al. In Vitro Anticancer Activity of the Root, Stem and Leaves of Withania Somnifera against Various Human Cancer Cell Lines. Indian J Pharm Sci. (2010)
- ^ Choi MJ, et al. Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol In Vitro. (2011)
- ^ a b c d e Um HJ, et al. Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem Biophys Res Commun. (2012)
- ^ Ihle JN. STATs: signal transducers and activators of transcription. Cell. (1996)
- ^ Groner B, Lucks P, Borghouts C. The function of Stat3 in tumor cells and their microenvironment. Semin Cell Dev Biol. (2008)
- ^ Kim DJ, et al. Signal transducer and activator of transcription 3 (Stat3) in epithelial carcinogenesis. Mol Carcinog. (2007)
- ^ a b c Li W, Zhao Y. Withaferin A suppresses tumor promoter 12-O-tetradecanoylphorbol 13-acetate-induced decreases in isocitrate dehydrogenase 1 activity and mitochondrial function in skin epidermal JB6 cells. Cancer Sci. (2013)
- ^ Wittwer JA, et al. Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells. Cancer Prev Res (Phila). (2011)
- ^ Robbins D, et al. Isocitrate dehydrogenase 1 is downregulated during early skin tumorigenesis which can be inhibited by overexpression of manganese superoxide dismutase. Cancer Sci. (2012)
- ^ Mayola E, et al. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis. (2011)
- ^ Abdulkarim B, et al. Antiviral agent Cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene. (2002)
- ^Â The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines.
- ^ Ravizza R, et al. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer. (2004)
- ^ Chipuk JE, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. (2004)
- ^ a b Munagala R, et al. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis. (2011)
- ^ Gupta A, et al. Efficacy of Withania somnifera on seminal plasma metabolites of infertile males: A proton NMR study at 800MHz. J Ethnopharmacol. (2013)
- ^ a b Shukla KK, et al. Withania somnifera improves semen quality by combating oxidative stress and cell death and improving essential metal concentrations. Reprod Biomed Online. (2011)
- ^ a b Mamidi P, Thakar AB. Efficacy of Ashwagandha (Withania somnifera Dunal. Linn.) in the management of psychogenic erectile dysfunction. Ayu. (2011)
- ^ Imokawa G, Kobayasi T, Miyagishi M. Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes. Cross-talk via trans-activation of the tyrosine kinase c-kit receptor. J Biol Chem. (2000)
- ^ Nakajima H, et al. Withania somnifera extract attenuates stem cell factor-stimulated pigmentation in human epidermal equivalents through interruption of ERK phosphorylation within melanocytes. J Nat Med. (2012)
- ^ a b c d e f Sehgal N, et al. Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A. (2012)
- ^ Kumar S, et al. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother Res. (2012)
- ^ Kumar S, et al. In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res. (2010)
- ^ Sagare A, et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med. (2007)
- ^ Deane R, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. (2003)
- ^ Dries DR, Yu G, Herz J. Extracting β-amyloid from Alzheimer's disease. Proc Natl Acad Sci U S A. (2012)
- ^ Uversky VN. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res. (2004)
- ^ Yadav S, et al. Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson's disease pathogenesis. Mol Neurobiol. (2012)
- ^ Prakash J, et al. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem Res. (2013)
- ^ Manjunath MJ, Muralidhara. Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem. (2013)
- ^ RajaSankar S, et al. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson's disease model mouse. J Ethnopharmacol. (2009)
- ^ Sankar SR, et al. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett. (2007)
- ^ Rajasankar S, Manivasagam T, Surendran S. Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson's disease. Neurosci Lett. (2009)
- ^ Kumar P, Kumar A. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington's disease. J Med Food. (2009)
- ^ Minhas U, Minz R, Bhatnagar A. Prophylactic effect of Withania somnifera on inflammation in a non-autoimmune prone murine model of lupus. Drug Discov Ther. (2011)
- ^ Minhas U, et al. Therapeutic effect of Withania somnifera on pristane-induced model of SLE. Inflammopharmacology. (2012)
- ^ Malhotra CL, et al. Studies on Withania ashwagandha, Kaul. IV. The effect of total alkaloids on the smooth muscles. Indian J Physiol Pharmacol. (1965)
- ^ Grandhi A, Mujumdar AM, Patwardhan B. A comparative pharmacological investigation of Ashwagandha and Ginseng. J Ethnopharmacol. (1994)
- ^ Prabu PC, Panchapakesan S, Raj CD. Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of Withania somnifera roots in Wistar rats. Phytother Res. (2013)
- ^ Owais M, et al. Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine. (2005)
- ^ Aphale AA, et al. Subacute toxicity study of the combination of ginseng (Panax ginseng) and ashwagandha (Withania somnifera) in rats: a safety assessment. Indian J Physiol Pharmacol. (1998)
- ^ Sehgal VN, Verma P, Bhattacharya SN. Fixed-drug eruption caused by ashwagandha (Withania somnifera): a widely used Ayurvedic drug. Skinmed. (2012)
- Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol. (2000)
- Chengappa KN, et al. Randomized placebo-controlled adjunctive study of an extract of withania somnifera for cognitive dysfunction in bipolar disorder. J Clin Psychiatry. (2013)
- Lopresti AL, Drummond PD, Smith SJ. A Randomized, Double-Blind, Placebo-Controlled, Crossover Study Examining the Hormonal and Vitality Effects of Ashwagandha ( Withania somnifera) in Aging, Overweight Males. Am J Mens Health. (2019)
- Nasimi Doost Azgomi R, et al. Comparative evaluation of the effects of Withania somnifera with pentoxifylline on the sperm parameters in idiopathic male infertility: A triple-blind randomised clinical trial. Andrologia. (2018)
- Chengappa KNR, et al. Adjunctive Use of a Standardized Extract of Withania somnifera (Ashwagandha) to Treat Symptom Exacerbation in Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study. J Clin Psychiatry. (2018)
- Choudhary D, Bhattacharyya S, Bose S. Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions. J Diet Suppl. (2017)
- Jahanbakhsh SP, et al. Evaluation of the efficacy of Withania somnifera (Ashwagandha) root extract in patients with obsessive-compulsive disorder: A randomized double-blind placebo-controlled trial. Complement Ther Med. (2016)
- Pingali U, Pilli R, Fatima N. Effect of standardized aqueous extract of Withania somnifera on tests of cognitive and psychomotor performance in healthy human participants. Pharmacognosy Res. (2014)
- Ambiye VR, et al. Clinical Evaluation of the Spermatogenic Activity of the Root Extract of Ashwagandha (Withania somnifera) in Oligospermic Males: A Pilot Study. Evid Based Complement Alternat Med. (2013)
- Choudhary D, Bhattacharyya S, Joshi K. Body Weight Management in Adults Under Chronic Stress Through Treatment With Ashwagandha Root Extract: A Double-Blind, Randomized, Placebo-Controlled Trial. J Evid Based Complementary Altern Med. (2017)
- Ziegenfuss TN, et al. Effects of an Aqueous Extract of Withania somnifera on Strength Training Adaptations and Recovery: The STAR Trial. Nutrients. (2018)
- Sharma AK, Basu I, Singh S. Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. J Altern Complement Med. (2018)
- Ramakanth GS, et al. A randomized, double blind placebo controlled study of efficacy and tolerability of Withaina somnifera extracts in knee joint pain. J Ayurveda Integr Med. (2016)
- Choudhary B, Shetty A, Langade DG. Efficacy of Ashwagandha (Withania somnifera L. Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu. (2015)
- Dongre S, Langade D, Bhattacharyya S. Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Improving Sexual Function in Women: A Pilot Study. Biomed Res Int. (2015)
- Kuchewar VV, Borkar MA, Nisargandha MA. Evaluation of antioxidant potential of Rasayana drugs in healthy human volunteers. Ayu. (2014)
- Salve J, et al. Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study. Cureus. (2019)
- Langade D, et al. Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Insomnia and Anxiety: A Double-blind, Randomized, Placebo-controlled Study. Cureus. (2019)
- Lopresti AL, et al. An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore). (2019)
- Mayor S. Testosterone may improve sexual function and mood in older men with low levels. BMJ. (2016)
- Zahra Kiasalari, Mohsen Khalili, Mahbobeh Aghaei. Effect of withania somnifera on levels of sex hormones in the diabetic male rats. International Journal of Reproductive Biomed. (2009)
Â
Â
Â
Â